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Abstract Genomic studies have estimated there are approxi-
mately 103–106 bacterial species per gram of soil. The micro-
bial species found in soil associated with decomposing human
remains (gravesoil) have been investigated and recognized as
potential molecular determinants for estimates of time since
death. The nascent era of high-throughput amplicon sequenc-
ing of the conserved 16S ribosomal RNA (rRNA) gene region
of gravesoil microbes is allowing research to expand beyond
more subjective empirical methods used in forensic microbi-
ology. The goal of the present study was to evaluate microbial
communities and identify taxonomic signatures associated
with the gravesoil human cadavers. Using 16S rRNA gene
amplicon-based sequencing, soil microbial communities were
surveyed from 18 cadavers placed on the surface or buried that
were allowed to decompose over a range of decomposition
time periods (3–303 days). Surface soil microbial

communities showed a decreasing trend in taxon richness,
diversity, and evenness over decomposition, while buried
cadaver-soil microbial communities demonstrated increasing
taxon richness, consistent diversity, and decreasing evenness.
The results show that ubiquitous Proteobacteria was con-
firmed as the most abundant phylum in all gravesoil samples.
Surface cadaver-soil communities demonstrated a decrease in
Acidobacteria and an increase in Firmicutes relative abun-
dance over decomposition, while buried soil communities
were consistent in their community composition throughout
decomposition. Better understanding of microbial community
structure and its shifts over time may be important for advanc-
ing general knowledge of decomposition soil ecology and its
potential use during forensic investigations.
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Introduction

Microbial decomposers are important recyclers of vertebrate
remains including humans [1–4]. There is an estimated eight
million bacterial species per gram of soil [5] and an inherent
relationship between environmental and decomposition asso-
ciated microbial communities. Early in decomposition, the
microorganism abundance at the carcass-soil interface rapidly
increases after carcass rupture events [1], and the decomposi-
tion associated microbial communities can have longer-term
influences on soil dynamics [2, 3, 6–8]. The rate of decay is
further accelerated in terrestrial environments via arthropods
[9–11]. Insects, such as flies, are thought to deposit microbes
onto the cadaver decomposition island [12] and may influence
the existing epinecrotic communities [11]. There are
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additional biotic and abiotic factors [13–16], such as temper-
ature, humidity, and scavenging, which add to the complexity
of decomposition and microbial community composition in
natural environments. Despite previous studies, there is a pau-
city of data documenting microorganism community dynam-
ics in soil associated with human decomposition [6, 13, 17,
18] (Table 1).

The goal of many decomposition studies is to generate
reliable means to estimate postmortem intervals (PMIs) [2,
6, 7, 10, 13, 14, 19–25]. Studies using gravesoil from human
surrogates, such as swine [11, 13, 14, 26] and mice [6, 7, 18],
have demonstrated the correlation betweenmicrobial diversity
and PMI estimates. Lauber et al. [7] demonstrated that soil
microbial communities increase mice decomposition rates by
two- to threefold. A Carter et al. [13] study of microbial suc-
cession in soil associated with swine decomposition reported
seasonality differences between summer and winter. Cobaugh
et al. [19] investigated gravesoil of four human cadavers in an
outdoor anthropological research facility, and demonstrated
aerobic taxa were predominant during active decay while an-
aerobic decomposers dominated during advanced decay.
Metcalf et al. [18] used 16S ribosomal RNA (rRNA) and
18S rRNA gene amplicons and internal transcribed spacer
(ITS) region sequencing to describe the microbial communi-
ties of four human cadavers in an outdoor anthropological
research facility. This study proved that the microbes in ca-
daver tissue and gravesoil become analogous during decom-
position and suggested that soil communities mediate cadaver
decomposition. However, there is a scarcity of empirical data

from human cadavers decomposing in natural ecosystems. In
the present study, our aim was to characterize the microbial
communities of 18 cadavers at various decomposition time
periods in a terrestrial habitat.

Materials and Methods

Gravesoil was collected at the Forensic Anthropology Re-
search Facility (FARF) at Texas State University (97°56′28″
W, 29°52′59″N). FARF is a willed donation facility in
Edwards Plateau with a soil type: Rumple-Comfort as-
sociat ion, Comfort-Rock outcrop complex, and
Mollisolls soil order [27, 28]. Sample details and de-
composition stages, categorized according to classifica-
tions used by FARF, are found in Table S1. This study
was approved by Alabama State University Institutional
Review Board, 2013CMST004A.

Cadavers were placed on the surface or buried at specific
time points to provide a range of decomposition and burial
times (3–303 days). Bodies were kept at 2–4 °C during trans-
portation to FARF. The study included 14 unclothed bodies
placed on the soil surface (hereafter referred to as Bsurface
cadavers^), and four unclothed bodies buried at a depth of
45 cm (hereafter referred to as Bburied cadavers^) to simulate
clandestine gravesites [27, 29]. Approximately 5 g of cadaver-
soil were collected from each surface cadaver at a uniform
depth of 5 cm under the cranium and feet [30] using sterile
soil scoops. Soil was collected from between the legs for three

Table 1 Forensic Anthropology
Research Facility (FARF) case
number, demographic data (sex
and ethnicity), soil sampling time,
stage of decomposition, location
of bodies in soil, and collection
date

FARF case
number

Sex Ethnicity Soil sampling
time (days)

Stage of
decomposition

Location of body
in the soil

Collection
date

Control

D31-2014 F W 8 Active decay Burial 07.14.2014

D18-2014 F W 96 Advanced decay Burial 07.14.2014

D63-2013 M B 214 Advanced decay Burial 07.14.2014

D48-2013 M W 303 Advanced decay Burial 07.14.2014

D56-2013 F W 3 Fresh Surface 10.25.2013

D57-2013 M W 6 Fresh Surface 10.25.2013

D34-2014 M W 8 Active decay Surface 07.14.2014

D53-2013 M W 15 Active decay Surface 10.25.2013

D28-2014 F H 18 Active decay Surface 07.14.2014

D30-2014 F W 22 Active decay Surface 07.14.2014

D52-2013 M W 28 Active decay Surface 10.25.2013

D51-2013 M W 33 Active decay Surface 10.25.2013

D50-2013 M W 34 Active decay Surface 10.25.2013

D47-2013 F W 74 Advanced decay Surface 10.25.2013

D37-2013 M W 99 Advanced decay Surface 10.25.2013

D35-2013 M W 106 Advanced decay Surface 10.25.2013

D16-2013 M W 240 Advanced decay Surface 10.25.2013
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surface cadavers. For each buried cadaver, soil was obtained
once from above the cadaver using soil corers 30.5×5 cm

(AMS). Soil was stored in polyethylene bags at −80 °C until
analysis [31]. A single surface control soil sample, void of

Fig. 1 The mean number of a
observed number of species based
on OTU frequencies, b Shannon-
Wiener Diversity, and c Simpson
Evenness decreased over time (0–
3 to 4–6 to 7–9 months) for
cadavers placed on the surface of
the soil, but there was a variable
microbial community response
for the soil collected from the
cadavers that had been buried
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contact with cadavers, was collected at least 5 m away from all
cadavers at the facility.

DNAwas extracted in triplicate from 0.25 g of cadaver-soil
using Nucleospin® Soil Kit (Macherey-Nagel), as described

Fig. 2 Relative abundance of
16S rRNA gene sequences
(OTUs) from soils collected
beneath cadavers (surface) or
from soils above cadavers
(buried). Community
composition is based on the top
12 phyla with a classification of
Other; the Other phyla are those
phyla that were present in some
but not all samples, unlike the 11
phyla with classifications that
were present in every sample.
Results from the Whitaker’s beta
diversity (βw) calculations are on
the column on the right side y-axis

Fig. 3 Heatmap of the V4 region of the microbial 16S rRNA gene
sequences (OTUs) at the familial taxonomic resolution. The solid lines
separating the columns break the surface placed, buried bodies, and the
control sample while the dashed lines indicate the temporal sampling

frequency in months. The top row indicates the standard deviation from
the mean number of sequences that correspond to the different colors of
the heatmap
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previously [30]. DNA quantification was performed using
Quant-iT dsDNA HS Assay kit and Qubit 2.0 (Life Technol-
ogies) and by measuring absorbance at 260 nm using
NanoDrop2000™ (Thermo Scientific). DNA was stored at
−20 °C until further analysis. IlluminaMiSeq 16S library con-
struction and sequencing were performed by the Michigan
State University Genomics Core Facility using a modified
version of the previously described protocol [32]. The V4
region of 16S rRNA genes was amplified with region-
specific 515F/806R primers [33–35]. Raw fastq files barcoded
16S rRNA paired-end reads were assembled, quality-filtered,
demultiplexed, and analyzed using default settings in QIIME
[36, 37]. Chimeric reads and singleton operational taxonomic
units (OTUs) were also removed [38]. After quality control,
the remaining high-quality sequences were binned into OTUs
at a 97 % sequence similarity cutoff using UCLUST [39].
Sequence files were deposited in the European Bioinformatics
Institute Sequence Read Archive (PRJEB9166).

DNA isolation for 40 samples was performed with 31 suc-
cessfully sequenced after quality filtering, which were used in
subsequent analysis. Temporal changes in microbial commu-
nity composition for surface and buried cadavers were visual-
ized in 3-month intervals using relative abundances at phylum
and family taxonomic level resolutions and evaluated using
weighted phylogenetic diversity (UniFrac) metrics. The time
intervals were chosen based on natural taphonomic processes
in decomposition time periods (Figure S1). A heatmap was
constructed using the pheatmap package (R version 3.0.2,
pheatmap version 1.0.2; R Core Team). Community differ-
ences between surface and buried remains were analyzed by
non-parametric one-way analysis of variance Kruskal-Wallis
tests using Prism 5 (GraphPad Software). The alpha value
(significance level) was 0.05 for all tests.

Results and Discussion

A total of 1,729,482 reads were detected for all samples. Surface
cadaver soil microbial community mean OTU richness (i.e.,
number of individual OTUs), diversity, and evenness decreased
over time (Figs. 1, S1, and S2). Whitaker’s beta diversity for
surface cadavers exponentially increased, while buried cadavers
demonstrated aU-shaped trend over decomposition time (Fig. 2).
Proteobacteria, Actinobacteria, and Acidobacteria were the most
predominant phyla in all samples (Fig. 2). Surface cadavers soils
contained communities that had lower mean relative abundance
of Acidobacteria and Verrucomicrobia. However, buried cadaver
soil microbial communities did not show distinguishable shifts in
the predominate phyla. Our study confirms Roesch et al. (2007)
findings that Proteobacteria was the most abundant phylum in all
soil types [40, 41], as it was most abundant in control and
gravesoils. Ordinal level results were consistent with phyletic
level assessments of soil microbial communities (Figure S3).

Rhodospirillales had an overall increase in relative abundance
for surface cadavers throughout decomposition time periods with
a similar trend detected for Burkholderiales; Lactobacillales had
the largest increase in relative abundance. There were two pre-
dominate orders that decreased in relative abundance:
Rhizobiales and Chthoniobacterales. Further, changes in micro-
bial communities for surface cadavers were detected at the family
level taxonomic resolution, while buried cadavers maintained a
consistent composition across decomposition time (Fig. 3).

Our study provided additional insight into soil ecology of
human decomposition by identifying key microbial taxa and
community changes that were detected in gravesoil of 18 ca-
davers naturally decomposing in a terrestrial habitat, making it
the largest survey of cadaver gravesoil to date. Our results
support the suggestion by Metcalf et al. [18] and others that
these microbial communities can be useful in forensic re-
search [6, 10, 42–45]. Additional studies are needed with true
replication of cadavers of similar decomposition time periods
to confirm our results and validate the findings of other recent
papers focusing on the human postmortem microbiome.
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